Resource-frugal classification and analysis of pathology slides using image entropy
نویسندگان
چکیده
Pathology slides of lung malignancies are classified using resource-frugal convolution neural networks (CNNs) that may be deployed on mobile devices. In particular, the challenging task distinguishing adenocarcinoma (LUAD) and squamous-cell carcinoma (LUSC) cancer subtypes is approached in two stages. First, whole-slide histopathology images downsampled to a size too large for CNN analysis but enough retain key anatomic detail. The decomposed into smaller square tiles, which sifted based their image entropies. A lightweight produces tile-level classifications aggregated classify slide. resulting accuracies comparable those obtained with much more complex CNNs larger training sets. To allow clinicians visually assess basis classification -- is, see regions underlie it color-coded probability maps created by overlapping tiles averaging probabilities at pixel level.
منابع مشابه
Satellite image classification and segmentation using non-additive entropy
X iv :1 40 1. 24 16 v1 [ cs .C V ] 1 0 Ja n 20 14 Satellite image classification and segmentation using non-additive entropy Lucas Assirati, Alexandre Souto Martinez, and Odemir Martinez Bruno Scientific Computing Group, São Carlos Institute of Physics, University of São Paulo (USP), cx 369 13560-970 São Carlos, São Paulo, Brazil http://www.scg.ifsc.usp.br email: [email protected], [email protected]...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولFrugal hypothesis testing and classification
The design and analysis of decision rules using detection theory and statistical learning theory is important because decision making under uncertainty is pervasive. Three perspectives on limiting the complexity of decision rules are considered in this thesis: geometric regularization, dimensionality reduction, and quantization or clustering. Controlling complexity often reduces resource usage ...
متن کاملsynthesis of amido alkylnaphthols using nano-magnetic particles and surfactants
we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.
15 صفحه اولPorosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Signal Processing and Control
سال: 2021
ISSN: ['1746-8094', '1746-8108']
DOI: https://doi.org/10.1016/j.bspc.2020.102388